4 research outputs found

    Device-Based Isolation for Securing Cryptographic Keys

    Get PDF
    In this work, we describe an eective device-based isolation approach for achieving data security. Device-based isolation leverages the proliferation of personal computing devices to provide strong run-time guarantees for the condentiality of secrets. To demonstrate our isolation approach, we show its use in protecting the secrecy of highly sensitive data that is crucial to security operations, such as cryptographic keys used for decrypting ciphertext or signing digital signatures. Private key is usually encrypted when not used, however, when being used, the plaintext key is loaded into the memory of the host for access. In our threat model, the host may be compromised by attackers, and thus the condentiality of the host memory cannot be preserved. We present a novel and practical solution and its prototype called DataGuard to protect the secrecy of the highly sensitive data through the storage isolation and secure tunneling enabled by a mobile handheld device. DataGuard can be deployed for the key protection of individuals or organizations

    Neural-Augmented Static Analysis of Android Communication

    Full text link
    We address the problem of discovering communication links between applications in the popular Android mobile operating system, an important problem for security and privacy in Android. Any scalable static analysis in this complex setting is bound to produce an excessive amount of false-positives, rendering it impractical. To improve precision, we propose to augment static analysis with a trained neural-network model that estimates the probability that a communication link truly exists. We describe a neural-network architecture that encodes abstractions of communicating objects in two applications and estimates the probability with which a link indeed exists. At the heart of our architecture are type-directed encoders (TDE), a general framework for elegantly constructing encoders of a compound data type by recursively composing encoders for its constituent types. We evaluate our approach on a large corpus of Android applications, and demonstrate that it achieves very high accuracy. Further, we conduct thorough interpretability studies to understand the internals of the learned neural networks.Comment: Appears in Proceedings of the 2018 ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE
    corecore